
Java will be faster than C++
Kirk Reinholtz

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, California 91 109-8099

Mailstop 303-310
lurk.reinholtz@acm.org

Abstract
This paper shows that it is possible for Java to
have better general performance than C++, and
that it is likely that this will actually occur. Java
performance can exceed that of C++ because
dynamic compilation gives the Java compiler
access to runtime information not available to a
C++ compiler. This occur because the
rapidly growing market for embedded systems
will be driven to extend battery life. Since each
CPU clock cycle consumes some power, battery
life is extended by improving performance, thus
achieving more computation per clock cycle.

Keywords
Java, C; C++; compiler performance;
compilers; dynamic compilation; comparative
performance of Java and C++.

Summary
There are numerous compelling reasons to use Java.
It is relatively easy to learn and use, so training and
debugging costs are reduced. It brings numerous
best computing practices to the general
programming community, in the form of its
extensive and standardized class libraries. Finally,

The research described in this paper was carried out by the Jet
Propulsion Laboratory, California Institute of Technology, under a
contract with the National Aeronautics and Space Administration.

it enables new architectures by its ability to easily
send code and data over a network.

Unfortunately, contemporary Java environments
provide deficient performance relative to those of
C++. The low performance of the tools is often taken
to imply that Java itself is inherently less efficient
than C++, which generally hinders its adoption.
Trade studies of Java vs. C++ are often of the form
“is the performance hit worth it?”.

Java, by virtue of its ability to compile the program as
it executes, can achieve performance greater than that
of C++ because the compiler has access to
information that just isn’t available to a traditional
C++ compiler. There is a lot of work between here
and there, but it can be done.

Java performance will constantly improve because
there will be serious money to be had by improving it
past that possible with C++. The reason is that
battery life is a serious concern and powerful market
differentiator in the growing embedded market, and
improved performance improves battery life because
it basically means more bang per CPU cycle. Each
CPU cycle drains the battery a little bit, so the less
CPU cycles used for a given task, the longer the
battery lasts.

There is a lot of work being done today to make Java
suitable for embeddedreal-time development. Once
that work is codified, it will narrow the semantic gap
between Java and the embeddedreal-time world.
Java will join the set of languages routinely used to
develop embedded and real-time systems, and then
performance will be the only thing that stands

mailto:lurk.reinholtz@acm.org

between Java and its becoming the dominant
language for such work.

There is a lot of work to be done to make this
possibility a reality. It’s worth it, because it will
move us to the next level of compiler technologies,
where it will be routine to use runtime information to
evolve the optimization of a program as it executes.
We’ll be able to use the advantages of Java without
penalty, and language research can begin to
harmonize language features with this new
compilation paradigm.

1 Introduction
The Java language can be either interpreted or
compiled. Java fully exploits interpretation, which
is one of the key distinctions between the Java
language and other contemporary languages. It has
various advantages insofar as code footprint and
debugging is concerned, but the big win is it
enables the “write once, run anywhere” vision: The
Java language and class libraries are specified
sufficiently tightly that you’ve got a pretty good
chance of your program working on a target
platform you didn’t consider when writing your
program, and Java bytecode technology lets
virtually any platform grab and execute your
program.

Unfortunately, interpreters, even really fancy ones,
are relatively slow. Compilation is used to improve
the performance of Java by translating it into
machine code that is executed directly by the
underlying hardware, rather than by an interpreter.
Current Java compilers tend towards one of two
flavors: One, known as “static compilation”,
compiles the source code to machine code on the
developers workstation, much as typically done
when using C++. The other, known as “dynamic
compilation”, compiles the Java bytecodes rather
than Java source code, and takes place upon the
target and as the program is executed. There are two
key distinctions between these compilation models:
(1) Static compilation has access to the source code
and occurs before the program is executed; and (2)
Dynamic compilation has access only to the
bytecodes and takes place during the execution of
the program.

The remainder of this paper will explore the
consequences of allowing compilation during the

execution of the program, and show that this could
lead to Java having better performance than C++.

2 Brief history of compilation
There is a fundamental property of compilation:
The more information the compiler has, the better
the resulting code can be. One can view the history
of compilation in this context as seeking to gain
access to and utilize ever more such information in
order to generate the fastest code possible.

The earliest compilers knew only the source code,
target platform, and perhaps programmer intent as
to optimizing for size or performance. A lot of
research was performed to figure out how to
generate good code given this information, and
pretty good compilers were the result.

Researchers kept pushing to improve performance,
but they hit a wall: There were a lot of possible
translations of a program. Some of those
translations are strictly better (i.e. faster or smaller)
than others, but many others depend upon the
particulars of a given execution of the program.
There was no way to pick the proper translation
without access to runtime information.

That led to the next phase of compiler development.
Compilers were benchmarked against large bodies
of existing code, and adjusted to maximize
performance for that code. The working
assumption is that “code is code”. That is to say, if
the compiler works well on a few dozen programs,
it’ll work great on everything. This is pretty much
the state of the practice today for contemporary
compilers for e.g. C++.

The next step in compiler evolution was to figure
out a way to feed the execution specifics of the
program being compiled back to the compiler, so it
could generate even better code. Numerous
schemes were implemented, but they generally
created an instrumented version of the program,
which wrote various statistics into a file during or
after the program was executed. After the program
was run through its typical execution profile a few
times, the file was then given to the compiler. The
compiler would use this information to tune its
optimizers in many ways: it could focus on
frequently-used routines, unroll heavily-used loops,
put frequently-accessed variables into global
registers, inline small and often-used functions,

eliminate unused code, improve branch prediction,
improve cache and paging performance, optimize
vtable dispatch, and so-on. There are contemporary
compilers for most languages that can do this.

The first phase of compiler evolution was oblivious
to the execution profile of the program it was
compiling. The next phase was aware of an
archetypical execution profile, which let it generate
better code, and the phase following that could use
an execution profile of the code being compiled.
This was pretty good, but there are a couple of
weaknesses. First, if the profile of a given run
varies from the example given to the compiler,
performance won’t be as good as possible.
Performance may even be degraded, depending
upon the aggressiveness of the optimizations.
Second, if the execution profile varies substantially
during an execution, the compiler just can’t pick a
single translation that’s best for the whole
execution. For example, many programs have
distinct phases, and often the phases will have
different optimization needs as to global register
allocation, inlining, branch prediction, and so-on.

3 Runtime compilation
Clearly, the next step in compiler evolution is to
compile the program as it executes. This form of
on-the-fly compilation is normally viewed as a way
to mitigate the performance cost of bytecodes, and
bytecodes are important because they enable the
Java vision of “write once, run anywhere”. The
general hope within the Java community is that only
a minimal performance reduction need be suffered
in order to gain access to the advantages of Java.
That’s the mindset of today. However, we’re really
witnessing a major step in compiler evolution, if not
a full-blown paradigm shift that will change the
face of programming forever. The reason is this:
Java performance is bound to exceed that of C++.

How can the performance of Java is bound to
exceed that of C++? After all, compiler technology
has something of a “speed of light” analog: The
optimizations can only do so well, even given a
zillion CPU cycles to improve them. And worse,
most of the pay-off is in the first few billion cycles
of computation. The compiler quickly reaches a
point where a whole lot more “pushing” results in
very little speedup. The law of diminishing returns
rules with an iron hand in this world. Traditional

C++ compilers are about as good as they’re going”
to get. There’s a little room for improvement, but
not a lot‘.

One way past this performance barrier is to
compile the program at run-time, which will give
the compiler access to information not available to
previous generations of compilers. The added
information gives the compiler more opportunities
for optimization, as well as the chance to evolve the
optimizations during the execution of the program.

Java will have unprecedented performance because
it’s the vehicle by which this phase of compiler
evolution will be mainstreamed. There is nothing
specifically magic about the technical aspects of the
Java language. There are numerous other languages
with the prerequisites. The magic of Java is that it
has brought fantastic research focus on pushing
compilation technology to this next step. The
technology in one form or another will probably be
retrofitted to other languages, including C++, but
Java can be the first.

4 Tradespace
One is generally working in a trade-space of one
form of another: Once the cherry-picking is over,
one doesn’t get something for nothing and one
should understand what trades against what. In this
case, there are a couple of new performance issues
to consider: compilation takes time, and it takes
CPU cycles. The argument that runtime
compilation will eventually yield better
performance than earlier compiler technologies was
based upon the heretofore tacit assumptions that (1)
the information used to do better optimization is
still valid when the compilation is finished and so
provides some advantage; and (2) any target CPU
cycles required to do the computation are amortized

1 One can use the concepts in this paragraph to
judge the level of compiler maturity within a
domain. For example, as long there are claims of
one implementation of Java running twice or ten
times faster than another, you can know the
compilers are still immature and the developers are
“cherry picking”. When comparisons start showing
differences of perhaps ten percent or less, you can
know they’ve started working on the hard stuff and
are nearing the wall.

by the resulting performance improvements. The
upshot of this is that some programs will run faster,
some will run slower, and the degree of impact,
good or bad, will depend upon the program and
perhaps its inputs.

So, the performance gain or loss of an arbitrary
program depends, in part, upon the actual source
code being executed and its inputs as well. We
know we’ll never eliminate the potential for slow-
down without reducing the potential for speed-up,
because it takes CPU cycles to detect a slowdown.
Basically, there is no guarantee that dynamic
compilation will improve the performance of an
arbitrary program. It will do so on the average, but
we can’t know it will in every case.

Fortunately, there is a subtle aspect to the above
that we can exploit to improve the picture: It is true
that theory says that not all programs will exhibit
the same, or even any, performance improvements,
but the developer doesn’t care about all programs.
The developer cares only about the program he’s
going to write, and there is nothing that says he
can’t write it such that it works in harmony with the
compilers. It has always been true that the
programmer needs to work with his tools if he
wishes to maximize performance. Dynamic
compilation is just one more such technology.

5 Battery Life
A battery is an energy storage device: it can emit a
certain number of watts for a certain amount of
time. It can emit half as many watts for about twice
as long, or twice the watts for half as long. A CPU
consumes a certain number of watts per M P .
Similarly to the battery, it takes about half the watts
to run at half the MIPS, and twice as many watts to
run at twice the MIPS. RAM behaves in a like
manner, consuming a certain number of watts per
accesses per second.

Taken together, this means that as the clock rate of
the compute system is reduced, its battery life is
proportionately improved. This isn’t a big deal for
devices that last months on a single battery charge,
but for high-consumption devices where the battery
life is measured in hours, even a slight
improvement in battery life can make a big
difference in the convenience and usability of the
device.

Improved energy efficiency can also reduce the cost
of a device, because it can provide tolerable battery
life using inexpensive mainstream battery
technologies, rather than requiring the use of
expensive exotics.

So, improving the performance of a system can
translate directly into improved battery life. The
more efficiently the code uses each CPU cycle, the
longer the battery will last.

6 Conclusion
On-the-fly compilation is a paradigm shift.
Paradigm shifts generally lead to exciting and
unanticipated new possibilities. In particular, Java
may become faster than C++ because the compiler
has access to information not available to a C++
compiler. Market forces will tend to make this
possibility become an actuality because improved
performance means improved energy efficiency and
battery life. Battery life will be an important
product discriminator in the rapidly growing market
for embedded systems.

